Fully gravure printed complementary carbon nanotube TFTs for a clock signal generator using an epoxy-imine based cross-linker as an n-dopant and encapsulant.

نویسندگان

  • Donghwan Kim
  • Younsu Jung
  • Junfeng Sun
  • Chisun Yeom
  • Hyejin Park
  • Dae Gon Jung
  • Yeonkyeong Ju
  • Kevin Chen
  • Ali Javey
  • Gyoujin Cho
چکیده

Printed p-type single walled carbon nanotube (SWCNT) based circuits exhibit high power dissipation owing to their thick printed dielectric layers (>2 μm) and long channels (>100 μm). In order to reduce the static power dissipation of printed SWCNT-base circuits while maintaining the same printing conditions and channel lengths, complementary metal-oxide-semiconductor (CMOS) based circuits are more ideal. These circuits, however, have not been successfully implemented in a scalable printing platform due to unstable threshold voltages of n-doped SWCNT based thin film transistors (TFTs). In this work, a thermally curable epoxy-imine-based n-doping ink is presented for achieving uniform doping and sealing of SWCNT layers by gravure printing. After printing the n-doping ink, the ink is cured to initiate a cross-linking reaction to seal the n-doped SWCNT-TFTs so that the threshold voltage of the n-doped SWCNT-TFTs is stabilized. Flexible CMOS ring oscillators using such n-doped SWCNT-TFTs combined with the intrinsically p-type SWCNT-TFTs can generate a 0.2 Hz clock signal with significantly lower power consumption compared to similarly printed p-type only TFT based ring oscillators. Moving forward, this CMOS flexible ring oscillator can be practically used to develop fully printed inexpensive wireless sensor tags.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalability of carbon-nanotube-based thin film transistors for flexible electronic devices manufactured using an all roll-to-roll gravure printing system

To demonstrate that roll-to-roll (R2R) gravure printing is a suitable advanced manufacturing method for flexible thin film transistor (TFT)-based electronic circuits, three different nanomaterial-based inks (silver nanoparticles, BaTiO3 nanoparticles and single-walled carbon nanotubes (SWNTs)) were selected and optimized to enable the realization of fully printed SWNT-based TFTs (SWNT-TFTs) on ...

متن کامل

A fully roll-to-roll gravure-printed carbon nanotube-based active matrix for multi-touch sensors

Roll-to-roll (R2R) printing has been pursued as a commercially viable high-throughput technology to manufacture flexible, disposable, and inexpensive printed electronic devices. However, in recent years, pessimism has prevailed because of the barriers faced when attempting to fabricate and integrate thin film transistors (TFTs) using an R2R printing method. In this paper, we report 20 × 20 acti...

متن کامل

Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors

Ambipolar and p-type single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs) are reliably integrated into various complementary-like circuits on the same substrate by inkjet printing. We describe the fabrication and characteristics of inverters, ring oscillators, and NAND gates based on complementary-like circuits fabricated with such TFTs as building blocks. We also show that comple...

متن کامل

SYNTHESIS AND STUDY OF CORROSION PERFORMANCE OF EPOXY COATING CONTAINING MULTI-WALLED CARBON NANOTUBE/ POLY ORTHO AMINOPHENOL NANOCOMPOSITE

The epoxy coatings containing multi-walled carbon nanotube/ poly ortho aminophenol nanocomposite were prepared and used as anticorrosive coatings. The nanocomposites with different contents of carbon nanotube were synthesized in a solution of sodium dodecyl sulfate and ammonium peroxy disulfate as a surfactant and an oxidant, respectively. The morphology and structural properties were confirmed...

متن کامل

Fully printed, high performance carbon nanotube thin-film transistors on flexible substrates.

Fully printed transistors are a key component of ubiquitous flexible electronics. In this work, the advantages of an inverse gravure printing technique and the solution processing of semiconductor-enriched single-walled carbon nanotubes (SWNTs) are combined to fabricate fully printed thin-film transistors on mechanically flexible substrates. The fully printed transistors are configured in a top...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 8 47  شماره 

صفحات  -

تاریخ انتشار 2016